0%

第三章 支配策略和理性

[TOC]

3.1 Kakutani Fixed Point Theorem

Let $f: A \to A$ be a correspondence with $f(x) \subset A$ for $x \in A$. If:

  1. A is compact, convex, and non-empty (finite space)
    • 紧致意味着集合 A 是有界的并且包含所有的极限点。
    • 意味着对于集合 A 中的任意两个点 $x_1, x_2$,它们之间的连线上的所有点也属于 A。这
    • 非空意味着集合 A至少包含一个点。
  2. f(x) is non-empty for all $x \in A$
    • 这意味着,对于集合 A 中的每一个点 x,我们都能找到至少一个点 y 使得 $y \in f(x)$。简单来说,每个点都有一个映射值。
  3. f(x) is a convex set
    • 对于集合 A 中的每一个点x,f(x) 是一个凸集。换句话说,如果$y_1, y_2 \in f(x)$,那么对于任意 $\lambda \in [0, 1]$,组合点 $\lambda y_1 + (1-\lambda) y_2 $也属于 f(x)。
  4. f(x) has a closed graph: if $\{x_n, y_n\} \to \{x, y\}$ and $y_n \in f(x_n)$, then $y \in f(x)$
    • 闭图性意味着,如果一个序列 $\{x_n, y_n\} \to \{x, y\}$,且每个$y_n \in f(x_n)$,那么 y 必定属于 f(x)。
    • 换句话说,如果我们通过极限过程从 $x_n$ 收敛到 x,并且在每个点$x_n$ 上找到一个 $y_n \in f(x_n)$,那么最终 y 会收敛到 f(x) 中的某个点。

then, there is an $x \in A$ such that $x \in f(x)$.

  • 在满足以上条件的情况下,Kakutani 固定点定理保证存在一个点 $x \in A$,使得$x \in f(x)$,即 x是一个固定点。这意味着存在一个点 x,它的映射值恰好是它本身,或者换句话说,f(x) = x。

博弈论:在博弈论中,Kakutani 固定点定理经常被用来证明混合策略纳什均衡的存在。通过构造一个适当的映射函数,可以使用该定理来证明在某些博弈中必然存在一个均衡点。

3.1.1 Sketch 证明纳什均衡的存在性

A mixed outcome p is a NE iff $p \in B(p)$

$B(p) = B_1(p_{-1}) \times B_2(p_{-2}) \times \dots \times B_N(p_{-N})$

$B(p): \Delta(A_1) \times \dots \times \Delta(A_N) \to \Delta(A_1) \times \dots \times \Delta(A_N)$

  1. $\Delta(A_1) \times \dots \times \Delta(A_N) $is compact, convex, and non-empty
  2. B(p) is non-empty for all p;
  3. B(p) is a convex set;
  4. B(p) has a closed graph: if $\{ p^n, \hat{p}^n \} \to \{ p, \hat{p} \}$ and $\hat{p}^n \in B(p^n)$, then $\hat{p} \in B(p)$

then, there is a $p \in \Delta(A_1) \times \dots \times \Delta(A_N) $such that $p \in B(p)$

3.1.2 证明

证明1:$\Delta(A_1) \times \dots \times \Delta(A_N) $is compact, convex, and non-empty

Let $n = |A_i|$(即 $A_i$的元素个数为 n). Then

$\Delta(A_i) = \left\{ (x_1, \dots, x_n) : x_i \in [0, 1], \sum_{i} x_i = 1 \right\}$

is a simplex of dimension $n-1$(这个集合是一个维度为 n−1 的单纯形。)

  • 单纯形:是由一组点通过直线段、面或超平面连接形成的凸包

证明2:B(p) is non-empty for all p

$B_i(p_{-i}) = \arg \max_{p_i’ \in \Delta(A_i)} U_i(p_i’, p_{(-i)})$

Let $f(x) = U_i(x, p_{(-i)}) = \sum_k x_k U_i(p_{(-i)}, a_k) \quad \text{for} \quad x \in \Delta(A_i)$

  • f(x) 即表示玩家 i在混合策略下的期望效用。

f(x) is continuous, and $\Delta(A_i)$ is a non-empty compact set.

  • 前者上个笔记证明了,后者是证明1

By the Weierstrass Theorem, f(x) has a maximum in $\Delta(A_i)$.

  • Weierstrass 定理(Weierstrass Theorem):如果一个函数在一个紧致集合上是连续的,那么它一定有最大值

Thus, $B_i(p_{-i}) = \arg \min_{x \in \Delta(A_i)} f(x)$ is non-empty.

证明3:f(x) is a convex set

For any $\lambda \in [0,1],$ if $p_i’, p_i’’ \in B_i(p_{-i})$, then we need to prove that

Proof:

  • $U_i(\lambda p_i’ + (1 - \lambda) p_i’’, p_{(-i)}) \geq \lambda U_i(p_i’, p_{(-i)}) + (1 - \lambda) U_i(p_i’’, p_{(-i)})$
  • $\geq \lambda U_i(p_i^, p_{(-i)}) + (1 - \lambda) U_i(p_i^, p_{(-i)}) = U_i(p_i^*, p_{(-i)})$

证明4:if $\{ p^n, \hat{p}^n \} \to \{ p, \hat{p} \}$ and $\hat{p}^n \in B(p^n)$, then $\hat{p} \in B(p)$

Assume $(p^n, \hat{p}^n) \to (p, \hat{p})$ and $ \hat{p}^n \in B(p^n)$ but $\hat{p} \notin B(p)$

There exists $\hat{p}_i \notin B_i(p_{(-i)})$ i.e., there exist $\bar{p}_i$ and$\epsilon > 0$ such that:

  • 同时存在一个策略$\bar{p}_i$ 和一个正的 $\epsilon$ 满足如上所示

For continuous $U_i, p_{(-i)}^n \to p_{(-i)} $ and $(\hat{p}_i^n, p_{(-i)}^n) \to (\hat{p}_i, p_{(-i)})$

  • 因为效用函数是连续的,因此存在如上所示

We have $U_i(\bar{p}_i, p_{(-i)}^n) > U_i(\hat{p}_i^n, p_{(-i)}^n) + \epsilon$,thus $\hat{p}_i^n \notin B_i(p_{(-i)}^n)$

3.2 Dominant Strategy

For some special cases, there is a optimal strategy independent of others’ choice, e.g., dominant strategy

和纳什均衡的区别:纳什均衡强调的是在给定其他玩家策略的情况下,没有任何玩家可以通过单方面改变策略来获得更好的结果;而支配策略则是指无论其他玩家选择什么策略,某个玩家的某个策略总是比其他策略更好。

如图,Prisoner 2 will select c whatever Prisoner 1 how to choose(因此c就是一个支配策略).

3.2.1 正式定义

$a_{(-i)} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_N) $is the outcome of strategies taken by all players other than i

$ A_{(-i)} $denotes the set of all such outcomes.

  • A pure strategy $a_i $ strictly dominates $ a_i’ $ if

  • A pure strategy $a_i $ weakly dominates $a_i’$ if

    while $u_i(a_i, a_{(-i)}) > u_i(a_i’, a_{(-i)}) $for some $a_{(-i)} \in A_{(-i)}$

$a_i$ is strictly dominant if it strictly dominates all other strategies in $ A_i $, and it is called weakly dominant if it weakly dominates all other strategies in $ A_i $.

3.3 Dominant Strategy Equilibrium 支配策略均衡

If every player has a (strictly and weakly) dominant strategy, then the corresponding outcome is a (strictly and weakly) dominant strategy equilibrium.支配策略的对应联合结果就是支配策略均衡

Dominant strategy equilibrium belongs to NE.

3.3.1 纳什均衡和支配策略均衡关系

纳什均衡不意味着博弈双方达到一个整体的最优状态,但需要注意的是,只有对玩家当前选择的最优策略才可以达到纳什均衡,严格劣势策略不可能成为最佳对策,而弱优势和弱劣势策略可能达到纳什均衡。

双方都支配的策略一定是纳什均衡,但反之不一定。

反例:性别战(Battle of the Sexes)

玩家B:足球 玩家B:歌剧
玩家A:足球 (3, 2) (0, 0)
玩家A:歌剧 (0, 0) (2, 3)
  1. 纳什均衡
    • 当玩家A选择“足球”,玩家B选择“足球”时,玩家A没有动力单方面改变策略(因为3 > 0),玩家B也没有动力单方面改变策略(因为2 > 0)。因此,(足球,足球)是一个纳什均衡。
    • 类似的,(歌剧,歌剧)也是一个纳什均衡。
  2. 支配策略
    • 对于玩家A来说:
      • 如果玩家B选择“足球”,玩家A选择“足球”更好(3 > 0)。
      • 如果玩家B选择“歌剧”,玩家A选择“歌剧”更好(2 > 0)。
      • 因此,玩家A没有支配策略,因为最优策略取决于玩家B的选择。
    • 对于玩家B来说情况相同
  • 存在两个纳什均衡:(足球,足球)和(歌剧,歌剧)。
  • 没有任何玩家有支配策略,因为每个玩家的最优策略都依赖于对方的选择。

3.4 Second Price Auction

  • 第二价格拍卖\维克里拍卖

N: players bid a building

$v_i≥0$: the true value for player i

$b_i≥0$: the bid price(竞标价格) for player i

$v_i-b_i$: the payoff for player i

The rule of second-price auction is given as follow:

  • Players make bids $b=(b_1,b_2,…,b_N)$ simultaneously
  • The higher player wins the building, yet pays the second highest bid price 最高的获得拍卖品并支付第二高的价格
  • If there are more than one highest players, then randomly select one player and pay his own bid price

3.4.1 Theorem

In second price auction, the strategy $b_i=v_i$ is a weakly dominant strategy for each player i.

$(v_1,v_2,…,v_N)$ is a weakly dominant strategy equilibrium

Proof:

It suffices to show $u_i(v_i, b_{(-i)}) \geq u_i(b_i, b_{(-i)})$ for all b_i, b_{(-i)}

If someone’s bid $b_k \geq v_i $, then player i has to pay $ b_i > b_k \geq v_i $ by winning. The payoff is $ v_i - \max_{k \neq i} b_k \leq 0 $. It is optimal to select $ b_i = v_i $

If each bid price $ b_k < v_i $, then the payoff is $ v_i - \max_{k \neq i} b_k > 0 $, since the payoff is always the same when winning. It is optimal to select $ b_i = v_i $

3.4.2 some notes

Honesty strategy is the best strategy

Many internet auctions can be regarded as variants of second price auction.

  • 许多互联网拍卖可以视为第二价格拍卖的变种

How about the first price auction. Is it a dominant strategy to bid your true value?

  • 第一价格拍卖中,最高出价者赢得拍卖并支付他们出价的金额。出价自己的真实价值(即出价正好等于物品对自己来说的价值)在这种拍卖格式中不是一个占优策略
  • 在第一价格拍卖中,竞标者通常有动机少出价(即出价低于真实价值),以增加他们的盈余(如果他们赢得拍卖)。出价自己的真实价值不是最优策略,因为通过稍微少出价通常能得到更好的结果。

3.5 Dominated Strategies

A pure strategy $a_i$ strictly dominates $a_i’\to $ $a_i’$ is strictly dominated by $a_i$ if:

$a_i$ weakly dominates $a_i’\to$ $a_i’$ is weakly dominated by $a_i$ if:

3.6 Iterated Elimination of Dominated Strategies

如何找到主导策略均衡?支配策略的迭代删除(Iterated Elimination of Dominated Strategies)

  • If every strategy eliminated is a strictly dominated strategy 如果每一个被删除的策略都是严格支配的策略,称为严格支配策略的迭代删除
    • Iterated elimination of strictly dominated strategy
  • If at least one strategy eliminated is a weakly DS 如果至少有一个被删除的策略是弱支配的策略,称为弱支配策略的迭代删除
    • Iterated elimination of weakly dominated strategy

3.7 Mixed Strategy and Dominant Strategy

3.7.1 Belief

Given a strategy game $G = \{N, \{A_i\}, \{u_i\}\}$ .

A mixed strategy outcome $p = (p_1, p_2, \dots, p_N$) .

$p = (p_i, p_{-i}) $, $ p_{-i}$ is called a belief.

  • 注意这里的 $ p_{-i}$ 是某个player混合策略选择中的概率情况,并不是之前的整体均衡

A belief $p_{-i} $ of player $i$ is a probability over $A_{-i}$.

A strategy $a_i \in A_i$ is a best response to belief $p_{-i}$ if:

辨析:混合策略中的符号

$p=(p_1,p_2,…,p_n)$ 是所有玩家的一个混合策略空间,对于每个玩家有 $p_i = (p_{i1}, p_{i2}, \dots, p_{i n_i}) $,这里的$p_i$就是上文中的$p$,belief的定义也来源于此。

3.7.2 Rationality and NE

A pure strategy $a_i \in A_i$ is rational if there exists a belief $p_{-i}$ such that $a_i$ is a best response to the belief $p_{-i}$.

Theorem: Every pure strategy with positive probability in a mixed strategy Nash equilibrium is rational.混合策略中任何一个正概率的纯策略都是理性的(混合策略自然也是理性的)

Proof: Let $p = (p_1, p_2, \dots, p_N)$ be a mixed strategy Nash equilibrium. Then, $p_i$ is a best response to $p_{-i}$, and every strategy with positive probability in $p_i$ is also a best response to $p_{-i}$.

3.7.3 Rationality and Strictly Dominant Strategy

$a_i \in A_i$ is rational if $a_i$ is a best response to some belief $p_{-i}$:

A mixed strategy $p_i \in \Delta(A_i)$ strictly dominates $a_i \in A_i$ if:

Theorem:If a strategy $a_i \in A_i$ is rational, then $a_i$ is not strictly dominated. 理性策略一定不被严格占优

By contradiction: Assume that $a_i’ \in A_i$ strictly dominates $a_i$:

3.7.4 Rationalizability

  • Eliminate all strictly DS and keep weakly DS

  • Eliminate all strictly DS by pure and mixed strategy

3.8 一些例子

3.8.1 例1:

Iterated Elimination and Pure Dominate Strategy

  • For player 1, the strategy ‘u’ is weakly dominated by ‘d’

  • For player 2, the strategy ‘l’ is weakly dominated by ‘r’

Therefore,we have the game

  • For player 1, the strategy ‘m’ is weakly dominated by ‘d’

  • For player 2, the strategy ‘m’ is weakly dominated by ‘r’

By iterated elimination of weakly dominated strategy

(d,r) is a weakly dominant strategy Equilibrium

3.8.2 例2:

Mixed Strategy and Dominant Strategy

A strategy may be not dominated by other strategies, yet can be dominated by a mixed strategy

  • For player 1, no strategy dominates ‘u’

  • The mixed strategy $p_1=(0, 0.5, 0.5)$ dominates ‘u’

Figure out the dominated strategy for expected payoff

Let $p_2=(p,1-p)$ be the mixed strategy for player 2

$U_1 (u,p_2 )=1$

$U_1 (m,p_2 )=3p $

$U_1 (d,p_2 )=4(1-p)$

3.8.3 Example 3

Mixed Strategy and Dominant Strategy

Player 1 is rational

  • m被$(\frac{1}{2},0,\frac{1}{2})$严格占优,不会选

Player 2 is rational and knows that Player 1 is rational

  • 类似的,r不会被选

Player 1 is rational, and knows that player 2 is rational, and knows that 2 knows that 1 is rational

  • 以此类推,可以不断迭代删除,最后获得理性策略(d,r)

3.8.4 Example 4:Beauty Contest (选美竞赛游戏)

  • There are $n$ players.

  • Each player selects a number $a_i \in [0, 50]$.

  • The payoff for each player $i$ is given by:

Given $a_{-i}$, the best strategy for player $i$ is:

And the optimal $a_i^$ lies within the range:$$ a_i^ \in \left[ 0, \frac{2}{3} \frac{n - 1}{n - \frac{2}{3}} 50 \right] $$

After round 1: $ \left[ 0, \frac{2}{3} \frac{n-1}{n-\frac{2}{3}} 50 \right] $

After round 2: $ \left[ 0, \left( \frac{2}{3} \frac{n-1}{n-\frac{2}{3}} \right)^2 50 \right] $

After round k: $ \left[ 0, \left( \frac{2}{3} \frac{n-1}{n-\frac{2}{3}} \right)^k 50 \right] $

Rational = $\{0\}$

3.9 Theorem

Theorem:A strictly dominated strategy is never used with positive probability in a mixed strategy Nash equilibrium

定理: 严格被支配的策略在混合策略纳什均衡中永远不会被以正概率采用。

假设玩家 i 在混合策略均衡中以正概率 p > 0 选择严格被支配策略 $a_i$ ,而存在严格支配策略 $ a_i’$。

  • 根据严格支配的定义,对于所有 $ a_{-i}$,有:
    $u_i(a_i’, a_{-i}) > u_i(a_i, a_{-i})$
  • 若玩家 i将原本分配给 $a_i$ 的概率 $p$ 转移到 $a_i’$,则他的期望收益会严格增加,与纳什均衡的稳定性矛盾。

3.9.1 例3:Find Mixed Strategy Nash Equilibria

Step 1: eliminate all strictly dominated strategies (mixed)

Step 2: use our previous methods introduced in Chapter 2

3.9.2 例4:Find Mixed Strategy Nash Equilibria

3.10 一些其他博弈

3.10.1 Symmetric Game 对称博弈

A game is symmetric if any player’s payoff $u_i(a_i, a_j, a_{-i,j})$ can be converted into any other player’s payoff $u_j(a_j, a_i, a_{-i,j})$ simply by re-arranging the player’s “names”.

Theorem. Any symmetric game has a symmetric NE, where each player uses the same strategy

3. 10.2 Continuous Game

A game $G = \{ N, \{ A_i \}, \{ u_i \} \}$ with complete information is continuous if each $A_i$ is non-empty and compact, and $u_i: A \to \mathbb{R}$ are continuous.

  • Cournot game $ \dots$
  • Many quantities are essentially continuous: If we’re considering how many fish to catch in a season, where the measurement is in millions of tons.

3.10.3 Existence of Equilibria for Infinite Games

(Nash) Every finite game has a mixed strategy Nash equilibrium.

(Debreu, Glicksberg, Fan) Consider a strategic form game $ \{ N, \{ A_i \}, \{ u_i \} \} $ such that for each player:

  • $ A_i $ is compact and convex.
  • $ u_i(a_i, a_{-i}) $ is continuous in $ a_{-i} $.
  • $ u_i(a_i, a_{-i}) $ is continuous and concave in $ a_i $.

There exists a pure strategy Nash equilibrium.

3.10.4 More Powerful Theorem

(Glicksberg) Consider a strategic form game $ \{ N, \{ A_i \}, \{ u_i \} \} $ such that for each player:

  • $ A_i $ is compact and convex.
  • $ u_i(a) $ is continuous in $ a $.

There exists a mixed strategy Nash equilibrium.

For continuous pure strategy space, the space of mixed strategy has infinite dimension